Neural networks are known to be a class of highly expressive functions able to fit even random inputoutput mappings with 100% accuracy. In this work we present properties of neural networks that complement this aspect of expressivity. By using tools from Fourier analysis, we highlight a learning bias of deep networks towards low frequency functions -i.e. functions that vary globally without local fluctuations -which manifests itself as a frequency-dependent learning speed. Intuitively, this property is in line with the observation that over-parameterized networks prioritize learning simple patterns that generalize across data samples. We also investigate the role of the shape of the data manifold by presenting empirical and theoretical evidence that, somewhat counter-intuitively, learning higher frequencies gets easier with increasing manifold complexity.
translated by 谷歌翻译
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While deep networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
translated by 谷歌翻译
Pedestrian safety is one primary concern in autonomous driving. The under-representation of vulnerable groups in today's pedestrian datasets points to an urgent need for a dataset of vulnerable road users. In this paper, we first introduce a new vulnerable pedestrian detection dataset, BG Vulnerable Pedestrian (BGVP) dataset to help train well-rounded models and thus induce research to increase the efficacy of vulnerable pedestrian detection. The dataset includes four classes, i.e., Children Without Disability, Elderly without Disability, With Disability, and Non-Vulnerable. This dataset consists of images collected from the public domain and manually-annotated bounding boxes. In addition, on the proposed dataset, we have trained and tested five state-of-the-art object detection models, i.e., YOLOv4, YOLOv5, YOLOX, Faster R-CNN, and EfficientDet. Our results indicate that YOLOX and YOLOv4 perform the best on our dataset, YOLOv4 scoring 0.7999 and YOLOX scoring 0.7779 on the mAP 0.5 metric, while YOLOX outperforms YOLOv4 by 3.8 percent on the mAP 0.5:0.95 metric. Generally speaking, all five detectors do well predicting the With Disability class and perform poorly in the Elderly Without Disability class. YOLOX consistently outperforms all other detectors on the mAP (0.5:0.95) per class metric, obtaining 0.5644, 0.5242, 0.4781, and 0.6796 for Children Without Disability, Elderly Without Disability, Non-vulnerable, and With Disability, respectively. Our dataset and codes are available at https://github.com/devvansh1997/BGVP.
translated by 谷歌翻译
The primary obstacle to developing technologies for low-resource languages is the lack of representative, usable data. In this paper, we report the deployment of technology-driven data collection methods for creating a corpus of more than 60,000 translations from Hindi to Gondi, a low-resource vulnerable language spoken by around 2.3 million tribal people in south and central India. During this process, we help expand information access in Gondi across 2 different dimensions (a) The creation of linguistic resources that can be used by the community, such as a dictionary, children's stories, Gondi translations from multiple sources and an Interactive Voice Response (IVR) based mass awareness platform; (b) Enabling its use in the digital domain by developing a Hindi-Gondi machine translation model, which is compressed by nearly 4 times to enable it's edge deployment on low-resource edge devices and in areas of little to no internet connectivity. We also present preliminary evaluations of utilizing the developed machine translation model to provide assistance to volunteers who are involved in collecting more data for the target language. Through these interventions, we not only created a refined and evaluated corpus of 26,240 Hindi-Gondi translations that was used for building the translation model but also engaged nearly 850 community members who can help take Gondi onto the internet.
translated by 谷歌翻译
Graph summarization via node grouping is a popular method to build concise graph representations by grouping nodes from the original graph into supernodes and encoding edges into superedges such that the loss of adjacency information is minimized. Such summaries have immense applications in large-scale graph analytics due to their small size and high query processing efficiency. In this paper, we reformulate the loss minimization problem for summarization into an equivalent integer maximization problem. By initially allowing relaxed (fractional) solutions for integer maximization, we analytically expose the underlying connections to the spectral properties of the adjacency matrix. Consequently, we design an algorithm called SpecSumm that consists of two phases. In the first phase, motivated by spectral graph theory, we apply k-means clustering on the k largest (in magnitude) eigenvectors of the adjacency matrix to assign nodes to supernodes. In the second phase, we propose a greedy heuristic that updates the initial assignment to further improve summary quality. Finally, via extensive experiments on 11 datasets, we show that SpecSumm efficiently produces high-quality summaries compared to state-of-the-art summarization algorithms and scales to graphs with millions of nodes.
translated by 谷歌翻译
Videos shot by laymen using hand-held cameras contain undesirable shaky motion. Estimating the global motion between successive frames, in a manner not influenced by moving objects, is central to many video stabilization techniques, but poses significant challenges. A large body of work uses 2D affine transformations or homography for the global motion. However, in this work, we introduce a more general representation scheme, which adapts any existing optical flow network to ignore the moving objects and obtain a spatially smooth approximation of the global motion between video frames. We achieve this by a knowledge distillation approach, where we first introduce a low pass filter module into the optical flow network to constrain the predicted optical flow to be spatially smooth. This becomes our student network, named as \textsc{GlobalFlowNet}. Then, using the original optical flow network as the teacher network, we train the student network using a robust loss function. Given a trained \textsc{GlobalFlowNet}, we stabilize videos using a two stage process. In the first stage, we correct the instability in affine parameters using a quadratic programming approach constrained by a user-specified cropping limit to control loss of field of view. In the second stage, we stabilize the video further by smoothing global motion parameters, expressed using a small number of discrete cosine transform coefficients. In extensive experiments on a variety of different videos, our technique outperforms state of the art techniques in terms of subjective quality and different quantitative measures of video stability. The source code is publicly available at \href{https://github.com/GlobalFlowNet/GlobalFlowNet}{https://github.com/GlobalFlowNet/GlobalFlowNet}
translated by 谷歌翻译
视力变压器由于其出色的性能而越来越多地嵌入工业系统中,但是它们的记忆力和力量要求使它们部署到边缘设备是一项艰巨的任务。因此,现在,模型压缩技术被广泛用于在边缘设备上部署模型,因为它们减少了资源需求并使模型推理非常快速有效。但是,从安全角度来看,它们的可靠性和鲁棒性是安全至关重要应用中的另一个主要问题。对抗性攻击就像ML算法的光学幻象一样,它们可能会严重影响模型的准确性和可靠性。在这项工作中,我们研究了对抗样品在SOTA视觉变压器模型上跨3个SOTA压缩版本的可传递性,并推断出不同压缩技术对对抗攻击的影响。
translated by 谷歌翻译
在辅助和自动驾驶系统的各种传感器中,即使在不利的天气或照明条件下,汽车雷达也被认为是一种健壮且低成本的解决方案。随着雷达技术的最新发展和开源的注释数据集,带有雷达信号的语义分割变得非常有前途。但是,现有的方法在计算上是昂贵的,或者通过平均将其减少到2D平面,从原始3D雷达信号中丢弃了大量的有价值的信息。在这项工作中,我们引入了Erase-Net,这是一个有效的雷达分割网络,以语义上的原始雷达信号。我们方法的核心是新型的检测到原始雷达信号的段方法。它首先检测每个对象的中心点,然后提取紧凑的雷达信号表示,最后执行语义分割。我们表明,与最新技术(SOTA)技术相比,我们的方法可以在雷达语义分割任务上实现卓越的性能。此外,我们的方法需要减少20倍的计算资源。最后,我们表明所提出的擦除网络可以被40%压缩而不会造成大幅损失,这比SOTA网络大得多,这使其成为实用汽车应用的更有希望的候选人。
translated by 谷歌翻译
我们研究了$ k $武装的决斗匪徒问题,这是传统的多武器匪徒问题的一种变体,其中以成对比较的形式获得了反馈。以前的学习算法专注于$ \ textit {完全自适应} $设置,在每次比较后,算法可以进行更新。 “批处理”决斗匪徒问题是由Web搜索排名和推荐系统等大规模应用程序激励的,在这种应用程序中执行顺序更新可能是不可行的。在这项工作中,我们要问:$ \ textit {是否只使用几个自适应回合有解决方案,该回合与$ k $ armed的决斗匪徒的最佳顺序算法的渐近后悔界限?} $? \ textit {在condorcet条件下} $,这是$ k $武装的决斗匪徒问题的标准设置。我们获得$ O(k^2 \ log^2(k)) + O(k \ log(t))$的渐近遗憾地平线。我们的遗憾界限几乎与在Condorcet条件下完全顺序环境中已知的最佳后悔界限相匹配。最后,在各种现实世界数据集的计算实验中,我们观察到使用$ o(\ log(t))$ rounds的算法与完全顺序的算法(使用$ t $ rounds)的性能几乎相同。
translated by 谷歌翻译
在深度学习的生态系统中,嘈杂的标签是不可避免的,但很麻烦,因为模型可以轻松地过度拟合它们。标签噪声有许多类型,例如对称,不对称和实例依赖性噪声(IDN),而IDN是唯一取决于图像信息的类型。鉴于标签错误很大程度上是由于图像中存在的视觉类别不足或模棱两可的信息引起的,因此对图像信息的这种依赖性使IDN成为可研究标签噪声的关键类型。为了提供一种有效的技术来解决IDN,我们提出了一种称为InstanceGM的新图形建模方法,该方法结合了判别和生成模型。实例GM的主要贡献是:i)使用连续的Bernoulli分布来培训生成模型,提供了重要的培训优势,ii)探索最先进的噪声标签歧视分类器来生成清洁标签来自实例依赖性嘈杂标签样品。 InstanceGM具有当前嘈杂的学习方法的竞争力,尤其是在使用合成和现实世界数据集的IDN基准测试中,我们的方法比大多数实验中的竞争对手都表现出更好的准确性。
translated by 谷歌翻译